Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.785
1.
Appl Microbiol Biotechnol ; 108(1): 330, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730049

A more optimized culture medium used in vitro to mimic the bacterial composition of original oral flora as similar as possible remains difficult at present, and the goal of this study is to develop a novel oral biofilm medium to restore the original oral microbiome. Firstly, we conducted a systematic literature review by searching PubMed and summarized the current reported culture media in vitro. Seven culture media were found. We used mixed saliva as the origin of oral species to compare the effects of the above media in culturing oral multispecies biofilms. Results indicated that among the seven media brain heart infusion containing 1% sucrose (BHIs) medium, PG medium, artificial saliva (AS) medium, and SHI medium could obviously gain large oral biofilm in vitro. The nutrients contained in different culture media may be suitable for the growth of different oral bacteria; therefore, we optimized several novel media accordingly. Notably, results of crystal violet staining showed that the biofilm cultured in our modified artificial saliva (MAS) medium had the highest amount of biofilm biomass. 16S rRNA gene sequencing showed that the operational taxonomic units (OTUs) and Shannon index of biofilm cultured in MAS medium were also the highest among all the tested media. More importantly, the 16S rRNA gene sequencing analysis indicated that the biofilm cultured in MAS medium was closer to the original saliva species. Besides, biofilm cultured by MAS was denser and produced more exopolysaccharides. MAS supported stable biofilm formation on different substrata. In conclusion, this study demonstrated a novel MAS medium that could culture oral biofilm in vitro closer to the original oral microbiome, showing a good application prospect. KEY POINTS: • We compare the effects of different media in culturing oral biofilms • A novel modified artificial saliva (MAS) medium was obtained in our study • The MAS medium could culture biofilm that was closer to oral microbiome.


Bacteria , Biofilms , Culture Media , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Biofilms/growth & development , Culture Media/chemistry , Mouth/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Saliva, Artificial
2.
Clin Perinatol ; 51(2): 425-439, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705650

This review illuminates the complex interplay between various maternal microbiomes and their influence on preterm birth (PTB), a driving and persistent contributor to neonatal morbidity and mortality. Here, we examine the dynamics of oral, gastrointestinal (gut), placental, and vaginal microbiomes, dissecting their roles in the pathogenesis of PTB. Importantly, focusing on the vaginal microbiome and PTB, the review highlights (1) a protective role of Lactobacillus species; (2) an increased risk with select anaerobes; and (3) the influence of social health determinants on the composition of vaginal microbial communities.


Gastrointestinal Microbiome , Microbiota , Placenta , Premature Birth , Vagina , Humans , Female , Pregnancy , Premature Birth/microbiology , Premature Birth/epidemiology , Vagina/microbiology , Infant, Newborn , Placenta/microbiology , Gastrointestinal Microbiome/physiology , Lactobacillus , Mouth/microbiology
3.
BMC Bioinformatics ; 25(1): 189, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745271

BACKGROUND: The selection of primer pairs in sequencing-based research can greatly influence the results, highlighting the need for a tool capable of analysing their performance in-silico prior to the sequencing process. We therefore propose PrimerEvalPy, a Python-based package designed to test the performance of any primer or primer pair against any sequencing database. The package calculates a coverage metric and returns the amplicon sequences found, along with information such as their average start and end positions. It also allows the analysis of coverage for different taxonomic levels. RESULTS: As a case study, PrimerEvalPy was used to test the most commonly used primers in the literature against two oral 16S rRNA gene databases containing bacteria and archaea. The results showed that the most commonly used primer pairs in the oral cavity did not match those with the highest coverage. The best performing primer pairs were found for the detection of oral bacteria and archaea. CONCLUSIONS: This demonstrates the importance of a coverage analysis tool such as PrimerEvalPy to find the best primer pairs for specific niches. The software is available under the MIT licence at https://gitlab.citius.usc.es/lara.vazquez/PrimerEvalPy .


Archaea , Bacteria , DNA Primers , Microbiota , RNA, Ribosomal, 16S , Software , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Archaea/genetics , DNA Primers/metabolism , DNA Primers/genetics , Humans , Mouth/microbiology , Computer Simulation
4.
Sci Rep ; 14(1): 10394, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710815

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Dysbiosis , Microbiota , Mouth , RNA, Ribosomal, 16S , Tobacco, Smokeless , Humans , Tobacco, Smokeless/adverse effects , Male , Female , Dysbiosis/microbiology , Adult , RNA, Ribosomal, 16S/genetics , Mouth/microbiology , Saliva/microbiology , Middle Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Smokers , Young Adult , Cigarette Smoking/adverse effects , Mouth Mucosa/microbiology
5.
J Appl Oral Sci ; 32: e20230382, 2024.
Article En | MEDLINE | ID: mdl-38747806

OBJECTIVES: This review highlights the existence and association of Acinetobacter baumannii with the oro-dental diseases, transforming this systemic pathogen into an oral pathogen. The review also hypothesizes possible reasons for the categorization of this pathogen as code blue due to its stealthy entry into the oral cavity. METHODOLOGY: Study data were retrieved from various search engines reporting specifically on the association of A. baumannii in dental diseases and tray set-ups. Articles were also examined regarding obtained outcomes on A. baumannii biofilm formation, iron acquisitions, magnitude of antimicrobial resistance, and its role in the oral cancers. RESULTS: A. baumannii is associated with the oro-dental diseases and various virulence factors attribute for the establishment and progression of oro-mucosal infections. Its presence in the oral cavity is frequent in oral microbiomes, conditions of impaired host immunity, age related illnesses, and hospitalized individuals. Many sources also contribute for its prevalence in the dental health care environment and the presence of drug resistant traits is also observed. Its association with oral cancers and oral squamous cell carcinoma is also evident. CONCLUSIONS: The review calls for awareness on the emergence of A. baumannii in dental clinics and for the need for educational programs to monitor and control the sudden outbreaks of such virulent and resistant traits in the dental health care settings.


Acinetobacter baumannii , Biofilms , Humans , Acinetobacter baumannii/pathogenicity , Acinetobacter Infections/microbiology , Mouth Neoplasms/microbiology , Mouth/microbiology , Drug Resistance, Bacterial , Virulence Factors/analysis , Mouth Diseases/microbiology
6.
Sci Rep ; 14(1): 10882, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740792

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Biofilms , Plasma Gases , Saliva , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Humans , Plasma Gases/pharmacology , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Saliva/microbiology , Fibroblasts/microbiology , Fibroblasts/drug effects , Periodontitis/microbiology , Periodontitis/therapy , Cell Line , Mouth/microbiology
7.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38739117

The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.


Anti-Bacterial Agents , Microbiota , Mouth , Humans , Mouth/microbiology , Anti-Bacterial Agents/pharmacology , History, Ancient , Diet , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , History, Medieval , History, 17th Century , History, 18th Century , History, 16th Century
8.
Sci Rep ; 14(1): 9998, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693196

It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. From a cohort of 4-7 month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In order of relative abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. In comparison to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.


Helicobacter Infections , Helicobacter pylori , Lung , Macaca mulatta , Microbiota , Mouth , RNA, Ribosomal, 16S , Animals , Macaca mulatta/microbiology , Lung/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Mouth/microbiology , RNA, Ribosomal, 16S/genetics , Male , Disease Models, Animal
9.
Sci Rep ; 14(1): 8463, 2024 04 11.
Article En | MEDLINE | ID: mdl-38605085

The oral cavity harbors complex communities comprising bacteria, archaea, fungi, protozoa, and viruses. The oral microbiota is establish at birth and develops further during childhood, with early life factors such as birth mode, feeding practices, and oral hygiene, reported to influence this development and the susceptibility to caries. We here analyzed the oral bacterial composition in saliva of 260 Swedish children at two, three and five years of age using 16S rRNA gene profiling to examine its relation to environmental factors and caries development at five years of age. We were able to assign the salivary bacterial community in each child at each time point to one of seven distinct clusters. We observed an individual dynamic in the development of the oral microbiota related to early life factors, such as being first born, born by C-section, maternal perinatal antibiotics use, with a distinct transition between three and five years of age. Different bacterial signatures depending on age were related to increased caries risk, while Peptococcus consistently linked to reduced risk of caries development.


Dental Caries Susceptibility , Dental Caries , Infant, Newborn , Humans , Child, Preschool , RNA, Ribosomal, 16S/genetics , Sweden/epidemiology , Mouth/microbiology , Saliva/microbiology , Bacteria/genetics , Dental Caries/epidemiology
10.
Front Cell Infect Microbiol ; 14: 1358684, 2024.
Article En | MEDLINE | ID: mdl-38660493

The enrichment of oral taxa in the gut has recently been reported as a notable alteration in the microbial balance in patients with intestinal disorders. However, translocation in populations without such diseases remains controversial. In this study, we examined 49 pairs of tongue and rectal samples collected from orthopedic patients without a history of intestinal disorders to verify the presence of oral taxa in the rectal microbiota. The bacterial composition of each sample was determined using 16S rRNA gene sequencing and amplicon sequence variant (ASV) analysis. Although the bacterial compositions of the tongue and rectal microbiota were distinctly different, tongue ASVs were detected in 67.3% of the participants and accounted for 0.0%-9.37% of the rectal microbiota. Particularly, Streptococcus salivarius, Fusobacterium nucleatum, and Streptococcus parasanguinis were abundant in the rectal microbiota. According to the network analysis, tongue taxa, such as S. salivarius and S. parasanguinis, formed a cohabiting group with Klebsiella pneumoniae and Alistipes finegoldii in the rectal microbiota. The total abundance of tongue ASVs in the rectal microbiota was significantly higher in participants with older age, hypertension, and proton pump inhibitor (PPI) use. Our study presents an extensive translocation of oral taxa to the rectum of a population without intestinal disorders and suggests that aging, hypertension, and PPI use are associated with an increased abundance of oral taxa and potential pathogenic bacteria in the rectal microbiota.


Bacteria , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Rectum , Tongue , Humans , Male , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Gastrointestinal Microbiome/genetics , Adult , Tongue/microbiology , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Rectum/microbiology , Mouth/microbiology , DNA, Bacterial/genetics , Young Adult , Proton Pump Inhibitors , Sequence Analysis, DNA , Hypertension/microbiology , Microbiota
11.
Sci Rep ; 14(1): 9685, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678061

This study aimed to assess the association between the oral microbiome, age, and frailty. Data and saliva samples were obtained from male and female participants aged 35-70 years (n = 1357). Saliva samples were analysed by 16S rRNA gene sequencing and differences in microbial diversity and community compositions were examined in relation to chronological age and the frailty index (FI). Most alpha diversity measures (Richness, Shannon Diversity, Faith's Phylogenetic Diversity) showed an inverse association with frailty, whereas a positive association was observed with age and Shannon Diversity and Evenness. A further sex-stratified analysis revealed differences in measures of microbial diversity and composition. Multiple genera were detected as significantly differentially abundant with increasing frailty and age by at least two methods. With age, the relative abundance of Veillonella was reduced in both males and females, whereas increases in Corynebacterium appeared specific to males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to females. Beta diversity was significantly associated with multiple mental health components of the FI. This study shows age and frailty are differentially associated with measures of microbial diversity and composition, suggesting the oral microbiome may be a useful indicator of increased risk of frailty or a potential target for improving health in ageing adults.


Frailty , Microbiota , Mouth , RNA, Ribosomal, 16S , Saliva , Humans , Middle Aged , Female , Male , Aged , Adult , Frailty/microbiology , Canada , RNA, Ribosomal, 16S/genetics , Mouth/microbiology , Saliva/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Aging , Age Factors
12.
Nutrients ; 16(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38674804

Cariogenic microorganisms are crucial pathogens contributing to the development of early childhood caries. Snacks provide fermentable carbohydrates, altering oral pH levels and potentially affecting microorganism colonization. However, the relationship between snack intake and cariogenic microorganisms like Candida and Streptococcus mutans in young children is still unclear. This study aimed to assess this association in a prospective underserved birth cohort. Data from children aged 12 to 24 months, including oral microbial assays and snack intake information, were analyzed. Sweet and non-sweet indices based on the cariogenic potential of 15 snacks/drinks were created. Mixed-effects models were used to assess the associations between sweet and non-sweet indices and S. mutans and Candida carriage. Random forest identified predictive factors of microorganism carriage. Higher non-sweet index scores were linked to increased S. mutans carriage in plaques (OR = 1.67, p = 0.01), potentially strengthening with age. Higher sweet index scores at 12 months were associated with increased Candida carriage, reversing at 24 months. Both indices were top predictors of S. mutans and Candida carriage. These findings underscore the associations between snack intake and cariogenic microorganism carriage and highlight the importance of dietary factors in oral health management for underserved young children with limited access to dental care and healthy foods.


Candida , Dental Caries , Mouth , Snacks , Streptococcus mutans , Humans , Infant , Female , Male , Child, Preschool , Dental Caries/microbiology , Dental Caries/epidemiology , Streptococcus mutans/isolation & purification , Candida/isolation & purification , Prospective Studies , Mouth/microbiology , Social Class , Low Socioeconomic Status
13.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38650052

The number of research papers published on the involvement of the oral microbiota in systemic diseases has grown exponentially over the last 4 years clearly demonstrating the growing interest in this field. Indeed, accumulating evidence highlights the central role of ectopic colonization by oral bacteria in numerous noncommunicable diseases including inflammatory bowel diseases (IBDs), undernutrition, preterm birth, neurological diseases, liver diseases, lung diseases, heart diseases, or colonic cancer. There is thus much interest in understanding the molecular mechanisms that lead to the colonization and maintenance of ectopic oral bacteria. The aim of this review is to summarize and conceptualize the current knowledge about ectopic colonization by oral bacteria, highlight wherever possible the underlying molecular mechanisms and describe its implication in health and disease. The focus lies on the newly discovered molecular mechanisms, showcasing shared pathophysiological mechanisms across different body sites and syndromes and highlighting open questions in the field regarding the pathway from oral microbiota dysbiosis to noncommunicable diseases.


Mouth , Humans , Mouth/microbiology , Microbiota/physiology , Bacteria/classification , Dysbiosis/microbiology
14.
Front Cell Infect Microbiol ; 14: 1364002, 2024.
Article En | MEDLINE | ID: mdl-38660490

The role of the oral microbiota in the overall health and in systemic diseases has gained more importance in the recent years, mainly due to the systemic effects that are mediated by the chronic inflammation caused by oral diseases, such as periodontitis, through the microbial communities of the mouth. The chronic infection by the human immunodeficiency virus (HIV) interacts at the tissue level (e.g. gut, genital tract, brain) to create reservoirs; the modulation of the gut microbiota by HIV infection is a good example of these interactions. The purpose of the present review is to assess the state of knowledge on the oral microbiota (microbiome, mycobiome and virome) of HIV-infected patients in comparison to that of HIV-negative individuals and to discuss the reciprocal influence of HIV infection and oral microbiota in patients with periodontitis on the potential establishment of a viral gingival reservoir. The influence of different clinical and biological parameters are reviewed including age, immune and viral status, potent antiretroviral therapies, smoking, infection of the airway and viral coinfections, all factors that can modulate the oral microbiota during HIV infection. The analysis of the literature proposed in this review indicates that the comparisons of the available studies are difficult due to their great heterogeneity. However, some important findings emerge: (i) the oral microbiota is less influenced than that of the gut during HIV infection, although some recurrent changes in the microbiome are identified in many studies; (ii) severe immunosuppression is correlated with altered microbiota and potent antiretroviral therapies correct partially these modifications; (iii) periodontitis constitutes a major factor of dysbiosis, which is exacerbated in HIV-infected patients; its pathogenesis can be described as a reciprocal reinforcement of the two conditions, where the local dysbiosis present in the periodontal pocket leads to inflammation, bacterial translocation and destruction of the supporting tissues, which in turn enhances an inflammatory environment that perpetuates the periodontitis cycle. With the objective of curing viral reservoirs of HIV-infected patients in the future years, it appears important to develop further researches aimed at defining whether the inflamed gingiva can serve of viral reservoir in HIV-infected patients with periodontitis.


Gingiva , HIV Infections , Microbiota , Humans , HIV Infections/drug therapy , HIV Infections/microbiology , HIV Infections/complications , HIV Infections/virology , Gingiva/microbiology , Gingiva/virology , Mouth/microbiology , Mouth/virology , Disease Reservoirs/microbiology , Disease Reservoirs/virology , Periodontitis/microbiology , Periodontitis/virology , Virome , Dysbiosis/microbiology , Anti-Retroviral Agents/therapeutic use , HIV
15.
Food Funct ; 15(8): 4409-4420, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38563257

The oral cavity connects the external environment and the respiratory and digestive systems, and the oral microbial ecosystem is complex and plays a crucial role in overall health and immune defense against external threats. Recently, the potential use of probiotics for disease prevention and treatment has gained attention. This study aimed to assess the effect of Weissella cibaria CMS1 (W. cibaria CMS1) consumption on the oral microbiome and immune function in healthy individuals through a 12-week clinical trial. This randomized, double-blind, placebo-controlled, parallel trial enrolled 90 healthy subjects. The consumption of W. cibaria CMS1 significantly increased salivary immunoglobulin A (p = 0.046) and decreased tumor necrosis factor-α (TNF-α) levels (p = 0.008). Analysis of the oral microbiota revealed changes in beta diversity, increased abundance of Firmicutes and Actinobacteria, and decreased abundance of Bacteroidetes and Fusobacteria after 12 weeks of consuming W. cibaria CMS1. Significant increases in various strains, including Lactobacillales, Bacilli, Streptococcaceae, Streptococcus, and Firmicutes, were observed in the W. cibaria CMS1 group after 12 weeks of intake. Additionally, Fusobacteriia Fusobacteriales Fusobacteriaceae and Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium exhibited a positive correlation with TNF-α. These findings demonstrate the positive effect of W. cibaria CMS1 on the oral environment and immune function.


Mouth , Probiotics , Weissella , Humans , Probiotics/pharmacology , Probiotics/administration & dosage , Double-Blind Method , Male , Female , Adult , Mouth/microbiology , Young Adult , Tumor Necrosis Factor-alpha/metabolism , Microbiota , Saliva/microbiology , Saliva/immunology , Immunoglobulin A , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Middle Aged
16.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 463-471, 2024 May 09.
Article Zh | MEDLINE | ID: mdl-38637000

Objective: To analyze the trends in literature related to oral microbiology and regenerative medicine from 2014 to 2023. By identifying key research countries, institutions, and their collaboration networks, as well as exploring research hotspots and development directions, the study seeks to provide references for researchers and decision-makers in the field of oral microbiology and regenerative medicine, thereby guiding the direction of future research. Methods: Relevant literature was retrieved using the Web of Science Core Collection database, with data processing and analysis conducted using CiteSpace 6.2.R6 software. Time slicing, node type selection, and the application of the g-index (g-index) were used for filtering, analyzing countries, institutions, authors, journals, and keywords. Results: The volume of literature in the field of oral microbiology and regenerative medicine has steadily increased from 2014 to 2023, with the number of publications first exceeding one hundred in 2020 and reaching 134 in 2022, accompanied by a citation frequency of 3 363 times. China and the United States have been at the forefront in terms of the volume of publications, while the United States and Germany lead in terms of intermediary centrality. The research primarily spans disciplines such as oral medicine, interdisciplinary studies, materials science, and immunology. High-frequency keywords include stem cells, scaffold materials, and gut microbiota, while cluster analysis indicates that inflammation, drug delivery, and antimicrobial activity remain consistent research themes. In recent years, the research heat in "tissue regeneration""gut microbiota " and "maxillofacial surgery" has risen, suggesting these may become focal points of future research. Conclusions: Over the past decade, the volume of literature published in the fields of oral microbiology and regenerative medicine, along with their citation frequencies, has increased annually. The research focus has shifted over time. Understanding the interactions between oral and gut microbiomes is crucial for developing innovative regenerative treatment strategies.


Regenerative Medicine , Humans , Mouth/microbiology , United States , China
19.
Medicina (Kaunas) ; 60(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38674238

The human microbiome has a crucial role in the homeostasis and health of the host. These microorganisms along with their genes are involved in various processes, among these are neurological signaling, the maturation of the immune system, and the inhibition of opportunistic pathogens. In this sense, it has been shown that a healthy ocular microbiota acts as a barrier against the entry of pathogens, contributing to the prevention of infections. In recent years, a relationship has been suggested between microbiota dysbiosis and the development of neurodegenerative diseases. In patients with glaucoma, it has been observed that the microbiota of the ocular surface, intraocular cavity, oral cavity, stomach, and gut differ from those observed in healthy patients, which may suggest a role in pathology development, although the evidence remains limited. The mechanisms involved in the relationship of the human microbiome and this neurodegenerative disease remain largely unknown. For this reason, the present review aims to show a broad overview of the influence of the structure and composition of the human oral and gut microbiota and relate its dysbiosis to neurodegenerative diseases, especially glaucoma.


Dysbiosis , Glaucoma , Microbiota , Humans , Glaucoma/microbiology , Microbiota/physiology , Dysbiosis/complications , Dysbiosis/immunology , Mouth/microbiology , Gastrointestinal Microbiome/physiology , Eye/microbiology , Neurodegenerative Diseases/microbiology
20.
J Dent Res ; 103(5): 461-466, 2024 May.
Article En | MEDLINE | ID: mdl-38584298

A subset of bacterial species that holds genes encoding for ß-glucuronidase and ß-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: ß-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.


Estrogens , Gastrointestinal Microbiome , Mouth Neoplasms , Humans , Estrogens/metabolism , Mouth/microbiology , Glucuronidase/metabolism , Saliva/microbiology , Saliva/metabolism , beta-Galactosidase/metabolism
...